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Abstract. A generalisation of the so-called extended irreversible thermodynamics (EIT)  is 
proposed. It leads, in a natural manner, to evolution equations of the Ginzburg-Landau 
type for the fast non-conserved variables. In this generalised scheme the thermal conduc- 
tivity can be written as a continued-fraction expansion. This corresponds to a macroscopic 
analogue of some well accepted microscopic theories. 

1. Introduction 

Some experimental techniques, such as neutron scattering or molecular dynamics 
simulations, provide an insight into the region of short wavelength and high frequencies 
(Boon and Yip 1980). In the thermodynamic limit (k, w + 0), linear irreversible thermo- 
dynamics (LIT) has shown to be the suitable thermodynamic framework for the analysis 
of such phenomena in macroscopic systems. In order to account for the wider region 
accessible to experimental techniques, the so-called generalised hydrodynamics (GH) 

has been introduced which uses, instead of dissipative coefficients, suitable memory 
functions. The latter gather phenomenologically the non-local response both in 
space and time when a perturbation acts on the system. However, generalised hydro- 
dynamics is compatible with LIT only when memories are delta functions. The local- 
equilibrium hypothesis is a central assumption in LIT, and this feature limits its validity 
to a narrow region of very small k and w. The question that arises is then: what kind 
of thermodynamics corresponds to the region of non-zero k and w ?  Several macro- 
scopic approaches project some light on this question, especially that known as 
extended irreversible thermodynamics ( EIT) (Casas-Vizquez er al 1984). This theory, 
not restricted to the local-equilibrium hypothesis, includes dissipative fluxes amongst 
the independent variables and, using a development similar to LIT, it may derive 
evolution equations for these fluxes, of the form of the Maxwell-Cattaneo equations 
(Maxwell 1965, Cattaneo 1948). This framework is justified in kinetic theory by Grad’s 
thirteen-moments method (Grad 1958) of solving the Boltzmann equation. 

In the present paper, we provide a phenomenological development of Grad’s ideas 
by including higher-order dissipative fluxes into the thermodynamical description of 
the system. Here, for the sake of simplicity, we restrict ourselves to the case of rigid 
heat conductors. The physical motivation for such an analysis is evident, since the 
present results could be applied to generalised hydrodynamics (Jou et a1 1985), to 
phonon hydrodynamics and ultrafast thermometry (Jou and PCrez-Garcia 198 1, Bampi 
et a1 1981), ultrasound attenuation in metals (Jou et a1 1982), critical phenomena 
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(Zubarev and Tischenko 1972) and also to physical systems with long relaxation times 
such as, for instance, polymeric solutions, superfluids and superconductors. The 
present development is original in that it recovers in purely macroscopic ways some 
results similar, at least in form, to those obtained by microscopic theories. This brings 
the limits of irreversible thermodynamics, up to now too restricted to the local equili- 
brium hypothesis, a step further towards a wider experimental and theoretical domain 
presently reserved to statistical considerations. 

In $ 2  we develop the macroscopic formalism and some aspects of its implications 
in fluctuation theory. In 0 3 the general form of the memory functions is analysed by 
means of EIT and it is shown that this theory leads quite naturally to a continued-fraction 
expansion for thermal conductivity, analogous to that obtained by Mori (1965a, b) 
starting from the Liouville equation. Finally, this continued-fraction expansion is 
compared with Burnett and super-Burnett expansions of the Chapman-Enskog method 
(Chapman and Cowling 1970). 

2. Extended irreversible thermodynamics (EIT) 

A general problem in dealing with systems out of equilibrium is that one has more 
variables than equations, because the fluxes of the variables remain, in principle, 
unspecified. In the case of heat conduction, the flux q appearing in the energy balance 
equation is indeed unspecified. In LIT this problem is solved by relating q with V T in 
a linear way, so that q is completely determined by the spatial distribution of U. This 
choice leads to some physical inconsistencies, such as, for instance, an infinite velocity 
of propagation of thermal signals. In EIT one considers that q is an independent 
variable, whose time evolution is described by Maxwell-Cattaneo equations. These 
add a relaxation time to the usual Fourier equation, but ignore non-local effects. In 
order to consider the latter, the Maxwell-Cattaneo equations should be replaced by 
a general balance equation for q. As usual in such equations, the temporal variations 
of q will be the sum of a production (volume) term plus a flux (surface) term. This 
flux, Q will be a tensor of order two. In accordance with the hypotheses of EIT, we 
will consider now that both q and Q are independent variables. Of course, one could 
proceed with this argument to higher and higher orders. This would generate a hierarchy 
of fluxes and balance equations for them, which should be closed at a certain level. 
The situation would be analogous to Grad’s development (Grad 1958) of the Boltzmann 
equation in term of higher moments of molecular velocity. Therefore, though abstract 
and unusual, the conceptual meaning of Q (the flux of the vector q )  is clear and it 
will be developed further in the following section. 

In the present paper we present a thermodynamical formalism allowing us to 
describe this hierarchical development, up to now restricted to microscopic theories. 

While the classical variable U is governed by the balance equation 

p u = - v  q (1) 

with p the mass density, we need evolution equations for q and Q in order to have a 
complete description of the system. We will proceed to obtain it through a generalisa- 
tion of the usual methods of EIT (Casas-Vfizquez er a1 1984). For the sake of simplicity, 
we will assume in the following that Q is symmetric and traceless. Otherwise, some 
new variables might enter in the description. 
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The generalised Gibbs equation corresponding to the entropy s = s( U, q, Q )  is 

ds  = T-' du + T-'ualq * dq + T-'va,Q : dQ. (2) 

Here, T is the absolute temperature and a l  and a2 are coefficients which will be 
determined later on. The double dot stands for the double contraction of the corre- 
sponding tensors. This form has been justified elsewhere (Casas-VPzquez et al 1984): 
it comes from assuming that s is an analytic function of q and Q. Since s is a scalar, 
the simplest dependence on these variables is through q2 and Q:Q, i.e. to assume 
s(u,  q, Q) = s(u )+  T- 'ua ,q2 /2+  T- ' va2Q:Q/2 .  Furthermore, we will assume for the 
entropy flux J ,  the following form: 

J , =  T - ' q + P , Q .  q. (3) 
This is the more general vector that can be constructed from q and Q q which reduces 
to the classical entropy flux when second-order terms are neglected. 

The standard form of the balance equation for s 

p S + V . J , = u  (4) 

leads, together with (1)-(3), to the following expression for the entropy production U :  

U = ~ S  ( V T - ' +  T- 'a14+P1V - Q ) + Q : ( P 1 V q +  T- 'a2Q) .  ( 5 )  

Our purpose is to obtain an expression for the evolution of q ana Q in terms of 
the basic variables, subject to the restrictions of the second law, which states that 
entropy production must be positive. Therefore, in view of the bilinear form of ( 5 )  
and in the linear approximation we will assume, in analogy with LIT, the following 
equations: 

V T-' + T - ' a l q  + P I V  * Q = p l q  

and 
PIVq + T - ' a 2 Q  = p 2 Q .  

The positive character of U is then ensured provided that p,  2 0 and p2 2 0. 
These equations may be written in the more suitable form 

4 =  Ta;'(p1q-VT-l-P1V * Q )  

and 

Q = Ta;'(p2Q - PiVq). (9) 
In the stationary limit and when non-local effects are ignored, (8) must reduce to 
Fourier's law, so that we must identify p I  = (AT2)- ' ,  A being thermal conductivity. 
Furthermore, in the local but non-stationary case, one must recover the Maxwell- 
Cattaneo equation for the heat flux, so that we have a, = -7'(AT2)-' ,  with T~ the 
corresponding relaxation time. Finally, we denote yl = PlAT2.  The physical meaning 
of the coefficient PI will be determined later on. By analogy, we rewrite the coefficients 
in (9) as p2 = (xT*)- ' ,  a2 = - T ~ ( x T ) - ' ,  y2 = P I ~ T 2 ,  where x is a transport coefficient 
relating Q and q and 72 is the relaxation time of Q. Then (8) and (9) can be written 
as 
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Therefore, the generalised Gibbs equation (2) takes the explicit form 

ds = T-’  du - ( T 1 t ) / h 2 ) q *  dq -(72v/xT2)Q:dQ. (12) 

Note that, introducing (11) into (10) we may write for the heat flux the following 
equation: 

q = -  [ { T ; ’ a ( f - f ’ ) -  Yly27;’7;’ exp[-(t - t ‘ ) /~~]v’ }q( t ’ )  dt’ 

We have written this equation in such a way that a memory function appears explicitly. 
Such a memory function is the sum of a delta part plus an exponential part. Note 
that the term in Q(O), due to the initial value of Q, gives rise to a fluctuating term in 
(13), due to the thermodynamic fluctuations of the initial values of Q. Finally, when 
T~ + 0, (13) reduces to 

~~4 = - ( q  + AV T -  12V2q) (14) 

where we have identified 1 as 1‘ = y I y 2 .  In this case, Q loses its independent character 
and then it disappears from the Gibbs equation (2). We have obtained in a natural 
way a Ginzburg-Landau type of equation for the heat flux. This scheme may justify 
the form of these equations for the dissipative fluxes used in previous works (Zubarev 
and Tischenko 1972, Jou and PCrez-Garcia 1981, Bampi et a1 1981, Jou et al 1982, 
1985) for a wide variety of systems. 

Expression (12) for the generalised entropy may be used to obtain the probability 
of the fluctuations of fluxes around equilibrium states. With this aim we make the 
further hypothesis that, in analogy with the classical entropy, the generalised entropy 
is related to the probability of e equilibrium fluctuations by means of the Einstein 
relation 

Pr- exp(a2s/2k,) (15) 

where k, is the Boltzmann constant. One obtains from (12) and (15) the following 
second moments for the fluctuations of q and Q:  

with AVkl = (&akj + These equations may be seen as particular cases of the 
fluctuation-dissipation theorem for an exponential regression of fluctuations of q and 
Q, and they allow us to compute A and ,y from equilibrium statistical models. Such 
fluctuations of q and Q, of thermodynamic origin, contribute as a noise in the evolution 
equations (1) and (10) respectively. In contrast with usual theories, these fluctuations 
are not introduced as mathematical artefacts, but have an explicit thermodynamic 
origin. 

3. Correlation functions 

After the developments of Kubo and Green in the 1950s, the time-correlation function 
formalism has acquired an increasing importance in calculating transport coefficients. 
At present, correlation functions play a role similar to that of the partition function 
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in equilibrium in non-equilibrium statistical mechanics. Moreover, the behaviour of 
some correlation functions is accessible to experimental techniques or by molecular 
dynamics simulations (MacQuarrie 1975). Generalised hydrodynamics (Boon and Yip 
1980) tries to interpret these experimental results using suitable memory functions 
instead of the classical transport coefficients. The exact calculation of these memory 
functions is an extremely difficult task and, in general, phenomenological models are 
used for them. The memory functions are linked to correlation functions by means 
of the fluctuation-dissipation theorem (MacQuarrie 1976, Forster 1975, Copley and 
Lovesey 1975). 

Classical correlation functions are defined as equilibrium averages of unequal time 
products of dynamical variables. We are here especially interested in autocorrelation 
functions of the form C, = (a(O)a*( t))  where the brackets mean an equilibrium average 
and a represents the deviation of a dynamical variable from its equilibrium value 
U = SA = A - ( A ) .  The asterisk stands for complex conjugation. 

In the particular case dealt with in the present paper, the fluctuation-dissipation 
theorem states that A (k, w )  = ( kT2)- ' (  S q S q ) k , ,  where the right-han,d side is the Fourier 
transform of the heat correlation function. The Fourier transforms of equations (10) 
and (11) are 

iwr,q'll = - i l l  - i y, koll + ih,kT 

i w r 2 o I 1  = -oil - iy2ki l l  

(17a) 

(17b) 

where /I stands for the longitudinal part of the corresponding variable and the upper 
tilde for the Fourier transform. When the expression for oIl obtained from (17 b) is 
introduced into (17a), and identifying the expression for ill obtained in this way with 
a generalised Fourier law q' = i k i (  k, w )  ?, we obtain for the generalised thermal conduc- 
tivity 

hOr;' 
i( k, a) = - 1  -1 2 * (18) 

. . .  YlY271 7 2  k 
iw + 7;' iw + T;' + 

This equation has the form of the first terms in the development of a continued-fraction 
expansion for x( k, w ) .  Here, according to (16), Aor;' = ( kT2)-'(SqSq).  The 
denominator in (18) corresponds to the memory function presented in (13): the delta 
term gives the 7;' in (18) while the exponential term in (13) corresponds to the 

The scheme presented in this paper is easy to generalise to a greater number of 
variables a,, u2, a, . . . a,. . . of increasing tensorial order n. (In our particular case 
a,= T a1 = q, a2 = 0). An example of this situation is provided by the successive 
moments of the velocity distribution function in the kinetic theory of gases. In this 
case, and in a bilinear approximation, one has 

+ r i l ) - '  term in the denominator of (18). 

where 7 )  denotes the total contraction of a, with a, and a,  3 0. For the entropy flux 
we assume, in such a bilinear approximation 

Js = 1 p,afl+1:'a,. 
n 
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From (19), (20) and (4) one obtains the following expression for the entropy production: 

Always in the bilinear approximation studied here, we will assume 

- ~ n a n + ~ n V . a n + i + P n - , V a n - l  = P A  (21) 

with pn 2 0 because of the positive character of U. Then, the evolution equations for 
the a, are 

a n a n  =-pnan+Pnv .a,+l+P,,-lVa,,- l  (22) 

where, obviously, a,,/p,, define the corresponding relaxation time r,, of a,,. This set 
of equations is precisely of the form predicted by kinetic theory (MacQuarrie 1975, 
Roldughin 1984) in a linear approximation, but here it follows from macroscopic 
arguments. Expression (22) is more specific than those which could be obtained simply 
by dimensional geometrical arguments, because it provides restrictions on the 
coefficients appearing in them. Furthermore, the fluctuation theory leads to 

(23) ( 6a,,6an) = k /  a,u 

which constitutes a generalisation of the fluctuation-dissipation theorem linking dis- 
sipative coefficients to equilibrium fluctuations of dissipative fluxes. Note that, from 
(22) one may get a continued-fraction expansion for the correlation function CO,( k, w )  
(Hess 1977) 

( ~ a , ( o ) ~ a l ( o ) >  
P:k2 

(24) 
(6a,6a,)k, ,  = 

iwa, + + 
P:k2 iwa2+p2+ 

iwa3+p3+.  . . 
For the special choice a ,  = T, a ,  = q, a2 = Q, etc, this continued-fraction expansion 

can be rewritten, following the notation in (17), as 

- 1 w +  . . .  
with Kk(k,  0 )  = 7 5 , 3 / , , + , ~ ; ~ 7 ; : ~ k ~ .  

This form is similar to that obtained by Mori (1965a, b) with a very different method. 
The projection-operator technique developed by Mori and Zwanzig (McQuarrie 1976) 
shows that, starting from the Liouville equation, the evolution equations for a dynamical 
variable a may be written in the form 

d ( t ) - i Q a ( t ) + j , '  K ( r - t ' ) a ( t ' )  dt '=f ( t )  

which is known as the generalised Langevin equation. The random force f( t )  intro- 
duced in (26) is in fact a dynamical variable resulting from the projection of the 
dynamics of a into a subspace of the fast variables of the system. It has not a properly 
stochastic character, but this is assigned to it by analogy with the Langevin 
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equation of Brownian motion. Then, the stochastic character of f ( t )  is not a con- 
sequence of an exact equation but just a choice to have a Markovian equation in (26). 
From (26) it may be seen that K ( t -  t ’ )  =(f(t)f*(t’)). This relation is a form of the 
fluctuation-dissipation theorem (Forster 1975) and may be deduced from the projec- 
tion-operator technique. Furthermore, i f f (  t )  is a white noise, K ( t )  turns out to be a 
delta function in time, but if this is not the case, (26) is a non-Markovian stochastic 
equation. It is known that such an equation may be written as a system of Markovian 
equations if one adds some variables to the description. Mori (1965a, b) has shown 
that f( t )  obeys in turn an exact generalised equation. Therefore, we have a hierarchy 
of equations 

f ; = i f i J n ( t ) - / o f  K n ( t - t ’ ) f n ( t ’ )  dt’+fn+l(f) (27) 

where f n ( t )  is the corresponding noise of the fn-l variable and R, and K ,  the 
corresponding frequency and memory functions. Then, one has an infinite set of 
equations that gives a more and more detailed description of the system. This is 
equivalent to adding more and more variables in the description. It may be truncated 
in some step assuming the Markovianicity of the last equation, which closes the 
hierarchy. If this closure is made at the nth equation, the description of the system 
is based on the independent variables (a, f l y . .  . , f n )  with a white noise fn+ l .  This 
Markovian assumption on fn+l(  t )  is equivalent to giving up the possibility of knowing 
more details on the system: when we cannot keep up the description, we close the 
hierarchy of evolution equations assuming the Markovian character for the latter 
‘random force’. 

Such an idea is reflected in the continued-fraction expansion due to Mori (1965a, b). 
From the Fourier transform of (26) and (27), one may obtain for the spectral distribution 
function the following expansion: 

where K i ( 0 )  are the memory functions at o = 0, which can be expressed by means of 
equilibrium correlation functions at equal times. Of course, a similar expansion is 
valid for each memory function Kj(t), because, as we have said, Kj is in turn a time 
correlation function, that of Note that when the property in question has a well 
defined time-reversal parity, the frequency terms Ri vanish in equilibrium. If we assume 
thatf,,, is a white noise, K,( t )  = Ana(  t )  and the continued-fraction expansion truncates 
at the nth level. 

However, although some similarities exist, the two approaches to (25) and (28) 
differ on fundamental grounds. The first is macroscopic and no hypothesis is made 
about the random nature of the variables, though a particular hydrodynamical form 
is assumed. The second is fully general, but it is a formidable task to calculate the 
coefficients from first principles. Moreover, though we can take ino= -T;’ to make 
expressions (25) and (28) more similar, this identification is inconsistent from the 
microscopic point of view, due to the time-reversal parity of q :  the term iRo in (28) 
has a reversible meaning, while the relaxation terms in (25) are clearly irreversible. In 
fact the Mori expansion is more general because it does not specify the dependence 
of the K ,  in terms of k, although it seems very difficult to determine this dependence 
from first principles. 
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The similarity of these two approaches, however, is far from casual: it is based on 
an extension of the description of the system. In EIT we add more and more dissipative 
fluxes, whereas in Mori theory one adds more and more random noises. 

Now we comment on some additional interesting features in (25). When frequencies 
of relaxation times go to zero the continued-fraction expansion for A ( k )  reduces to 

A0 A ( k )  = 
Y1 Y2k2 l +  

Y2Y3k2 1+- 
l + .  . . 

which in the first approximation ( yi = 0 for i 3 3) has the form obtained by Alley and 
Adler (1983) in molecular dynamics simulations. This form differs considerably from 
the standard power expansion in the Chapman-Enskog method (Chapman and 
Cowling 1970) 

A ( k )  = Ao( 1 + A,  k 2  + A2k4+ A, k6 + . . .) (30) 

where the Ai are higher-order Bumett coefficients. The convergence of this series for 
transport coefficients presents some difficulties (Dorfmann 1980), whereas (21) is well 
defined for all values of k 

Starting from a method due to Waldmann (1963), which is a modification of Grad’s, 
a similar expression for the diffusion coefficients has been obtained by Hess (1977). 
This author shows that in this particular case the continued-fraction expansion has a 
fast convergence towards the known solutions, whereas a power expansion as (29) for 
the diffusion coefficients does not show this feature. 

The practical applications of this formalism can be found in the domain of ultrafast 
thermometry, in experiments on temperature waves (second sound) and in phonon 
hydrodynamic theories in solids (Chester 1966, Guyer and K ” h a n s 1  1966, Roger 
1971, Beck er al 1974, Fekete 1981). The theory of phonon hydrodynamics leads to 
the following equation for the temperature (Beck et a1 1974): 

where cIl is the speed of the second sound, rR the relaxation time for the resistive 
scattering of phonon under umklapp processes and 711 the relaxation time of momentum- 
conserving normal processes. 

The present formulation leads to the following equation for the temperature: 

-( r1 + r2 )w2  f - irlrzo3 f + io f + iwk’ 

This equation is of higher order in o than the previous one, to which it reduces when 
one assumes that r2=0. In this case one finds, by identifying both equations, that 
r ,  = rR, A. = 2CfTR. Moreover, if one assumes that q does not vanish, but the o3 term 
can be neglected in (32), one finds that r2 has an influence on the terms of order o2 
and o k 2 .  A careful analysis of the experimental data could decide which of both 
models is more suitable for the description of the physical situation. The present 
experimental data, however, are not yet significant to clarify this point. 
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4. Concluding remarks 

The main results of the present work are the following. First of all, the extension 
suggested by Grad and Waldmann methods, which amounts to a description of the 
system in terms of more and faster dissipative variables, may be treated phenomenologi- 
cally in a thermodynamic framework which shows how to generalise the usual develop- 
ments of extended irreversible thermodynamics and gives a new and sounder physical 
insight into some previous generalisations. 

Secondly, our phenomenological development leads to a continued-fraction 
expansion of the thermal conductivity which is the macroscopic analogue of the 
corresponding microscopic expansion in Mori’s formalism. Therefore, the present 
macroscopic theory is much closer to present microscopic developments than previous 
thermodynamic theories, based on a local equilibrium hypothesis (LIT) or including as 
supplementary variables only the usual dissipative fluxes ( EIT). When the relaxation 
times go to zero, the corresponding continued-fraction expansion of the dissipative 
coefficients in k2 is more useful than the series expnasion in k2 obtained in the 
Chapman- Enskog method. 
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